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Recent increases in human disturbance pose significant threats to migratory

species using collective movement strategies. Key threats to migrants may

differ depending on behavioural traits (e.g. collective navigation), taxonomy

and the environmental system (i.e. freshwater, marine or terrestrial) associ-

ated with migration. We quantitatively assess how collective navigation,

taxonomic membership and environmental system impact species’ vulner-

ability by (i) evaluating population change in migratory and non-

migratory bird, mammal and fish species using the Living Planet Database

(LPD), (ii) analysing the role of collective navigation and environmental

system on migrant extinction risk using International Union for Conserva-

tion of Nature (IUCN) classifications and (iii) compiling literature on

geographical range change of migratory species. Likelihood of population

decrease differed by taxonomic group: migratory birds were more likely to

experience annual declines than non-migrants, while mammals displayed

the opposite pattern. Within migratory species in IUCN, we observed that

collective navigation and environmental system were important predictors

of extinction risk for fishes and birds, but not for mammals, which had

overall higher extinction risk than other taxa. We found high phylogenetic

relatedness among collectively navigating species, which could have

obscured its importance in determining extinction risk. Overall, outputs

from these analyses can help guide strategic interventions to conserve the

most vulnerable migrations.

This article is part of the theme issue ‘Collective movement ecology’.
1. Introduction
Migration is one of life’s most complex and ecologically consequential beha-

viours. In recent years, while technological advances have enabled scientists

to describe for the first time the complex social mechanisms (e.g. collective navi-

gation) that facilitate many migrations (e.g. [1–9]), scientists have also

suggested that many such migrations may be in peril [10,11]. However, more

spatially and taxonomically ambitious analyses are needed to help identify

what specific factors may control the extinction risk and population status of

collectively navigating and other migratory species.

Loss of migration is non-trivial: migratory species have been shown to pro-

vide unique functions to ecosystems, such as vectoring nutrients and seeds

long distances, maintaining grassland ecosystems through cyclical grazing and
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providing pulses of prey to resident predators (reviewed in

[12]). Economies that are reliant on tourism or harvesting

migratory species (e.g. wildebeest migrations in the Serengeti)

could suffer from their decline [13,14]. Collective navigation

(i.e. group-level pooling of information) aids migratory species’

ability to travel long distances, and conserving this behaviour

requires maintaining a minimum population size [15], which

helps drive important ecological processes [12].

Several studies have reported declines of migratory species,

although this research has primarily focused on specific taxo-

nomic groups [11] or is qualitative [16]. Sanderson et al. [17], for

example, found European long-distance migratory birds to have

declined relative to resident European birds. Similarly, Harris

et al. [18] reported that of the 24 large-bodied migratory ungu-

lates they reviewed, six migrations have been lost. However,

studies on extinction risk found that migration was not an impor-

tant predictor of extinction risk [19]. One study on birds even

suggested that migration decreased risk of extinction [20].

In the light of these contradicting predictions, exploring

how collective navigation, environmental system (i.e. the

freshwater, marine or terrestrial system associated with the

migratory population) and taxonomy shape vulnerability to

population decline and extinction risk could help focus efforts

to preserve migrations. Species that travel long distances and

rely on multiple habitat types are likely to be disproportio-

nately impacted by human actions [17,21]. Road building,

agricultural development and dam construction create barriers

for long-distance migratory species [22,23], and such impacts

can be further compounded by habitat loss, overharvest and

climate change [10,24]. Threats may be even more serious for

collectively navigating species. If these populations fall below

a threshold size, Allee effect-caused collapses might occur

that are difficult or impossible to reverse [15].

The environmental system through which a species migrates

can also alter which threats they face; for example, landscape

fragmentation and urban development are terrestrial disturb-

ances that will likely have a greater impact on species that

migrate on land than on marine or freshwater migrants. Simi-

larly, the comparative lack of human infrastructure and

associated fragmentation in marine systems could potentially

leave migrating marine species at less risk of extinction [25].

The discrete and comparatively easy-to-modify nature of many

freshwater ecosystems (e.g. dams in rivers) may increase risk of

extinction for species migrating through these systems [26].

However, some characteristics of migratory species could

increase their ability to circumvent potential threats. For

example, the synthesized integration of environmental cues

can help collective migrants traverse fragmented and com-

plex landscapes [27]. Furthermore, migratory species with

large geographical ranges and flexible movement patterns

may reduce risk by moving to a new habitat when part of

their range is fragmented or degraded [28].

In this study, we follow previous definitions of migration,

defining it as cyclical and directed round-trip movement of ani-

mals between discrete areas [11]. We restrict this definition to

include only movements greater than 100 km in one direction

[29]. We leverage the power of two large datasets (International

Union for Conservation of Nature Red List (IUCN) and Living

Planet Database (LPD)) to examine the status of migrations

from three perspectives: (i) by comparing population change

over time; (ii) by analysing the role of collective navigation

and environmental system (freshwater, marine, terrestrial

and their combination) on migrant extinction risk; and (iii) by
examining contemporary shifts in the geographical range

of migratory species. The results from these multiple pers-

pectives contribute to our general understanding of how well

migrations will fare in the Anthropocene and better position

us to strategically respond to these risks.
2. Material and methods
(a) Population change over time
(i) Data selection and coding
To evaluate the relative vulnerability of migratory birds, mammals

and fishes, we created indices using population change data from

the LPD [30]. Reptiles, amphibians and invertebrates were

excluded from the analyses because of lack of information in the

LPD. The LPD is one of the largest repositories of time-series data

relevant to recent population change (see [31] for further details).

For this analysis, we included data on all LPD populations of

birds, mammals and fishes (Actinopterygii only, as adequate

trend data were available) with sufficient information to determine

migratory status. Each population record was coded by its ecologi-

cal affiliation to three different environmental systems: freshwater,

marine and terrestrial. Environmental systems were assigned based

on a number of considerations, including where the population

spends the majority of its time, which environmental system(s)

help sustain the population, and where the population is most

threatened (see electronic supplementary material, table S1).

Seven candidate biogeographic realms were assigned to terrestrial

and freshwater populations and five realms were assigned to

marine populations (electronic supplementary material, table S1).

We used the Global Register of Migratory Species (GROMS) for

migratory coding [29]. As above, GROMS also defines migration

as predictable and cyclical movements of more than 100 km.

For details on migratory coding, see electronic supplementary

material, tables S2 and S6.

After removing replicates (populations monitored in the

same location and at the same time), the final dataset created for

analysis included 11 717 populations of 2978 species (electronic

supplementary material, table S3).

(ii) Data analysis and statistical methods
To estimate patterns of abundance change, we followed the Living

Planet Index (LPI) method and calculated the geometric mean of

trends for each species whereby each population time-series with

six or more data points was modelled using a generalized additive

modelling (GAM) framework [31]. Population time-series with

fewer than six data points or those that resulted in a poor GAM fit

were modelled using the chain method [32]. In cases with more

than one population time-series per species, the modelled annual

trends for each population were averaged within each realm, class

and realm/class combination to provide a single set of annual

trends for each species. These were then averaged across species

and converted to index values with a baseline year of 1970. For

each index, we generated 95% confidence intervals using a bootstrap

resampling technique for 10 000 iterations [31]. These confidence

intervals demonstrate the uncertainty in the index values inherited

from the baseline in 1970 and propagated through the time-series.

An R package, rlpi, for calculating these index values is available

at https://github.com/Zoological-Society-of-London/rlpi.

Using these population trends, we explored a range of models

to examine the relationship between migratory behaviour and

population trends. For total change in abundance across all years,

we constructed linear mixed effects models in R using the lme4

package [33,34]. For likelihood of annual increases, beta-binomial

models were used to model the ratio of increasing and decreasing

years for each population using the glmmadmb package in R

[35]. In these comparisons, we also excluded populations with no

https://github.com/Zoological-Society-of-London/rlpi
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available GROMS status. Across all models, species and realm were

included as random effects. Models were compared using the

Akaike information criterion (AIC).

To examine how these differences in migration vulnerability

varied by taxonomic grouping, all analyses were repeated for

birds, mammals and fishes (for taxonomic breakdown see

electronic supplementary material, table S3).

We then further analysed differences for taxonomic groups in

select regions for which there were sufficient data for robust com-

parison between taxa and systems. Although system was not an

important factor for birds and mammals overall, regional differ-

ences between systems were explored. Many regions did not

have sufficient data to run these finer-scale analyses or to compare

to other systems or taxa (see electronic supplementary material,

tables S4 and S5 for breakdown by realm). To illustrate the

nature of these regional-level differences, we focused on the

Palearctic and northern temperate Pacific realms because these

regions had sufficient data for taxonomic and system comparisons.

(b) Species extinction risk
(i) Data selection and coding
Our second analysis investigated patterns of migrant extinction

risk using data from the IUCN Red List [36]. The IUCN database

collects information from global assessments based on standar-

dized protocols, which are linked to population size and

structure, population trends and geographical range. We extracted

data on the threat status and environmental system (terrestrial,

marine, freshwater or their combination) for all bird, mammal

and fish species listed in both GROMS and IUCN (n ¼ 3447)

[36]. The migratory status of each species was coded using

GROMS. IUCN species were classified as terrestrial, freshwater,

marine or a combination of the three environmental systems

based on IUCN’s classification scheme (electronic supplementary

material, table S6). IUCN threat status was converted to a 1–6

ordinal numerical index (following [37]).

We used the resultant database to test the effects of envi-

ronmental system (referred to as ‘system’) and tendency to

collectively navigate on migratory species extinction risk. Owing

to considerable gaps in information on whether species directly

exhibit collective movement or collective navigation, we coded

each species based on proxy measures. Based on findings from

the literature exploring the emergent dynamics of collective naviga-

tion [15,38], we coded migratory species as putative ‘collective

navigators’ if they were determined to travel in social groups (e.g.

pods, herds, flocks, etc. as distinguished from loose aggregations

of non-interacting individuals). Principal databases used for these

determinations were FishBase and IUCN Red List (fishes); Avibase,

NatureServe, USFWS Migratory Bird Data Center, and BirdLife

International (birds); and IUCN and NOAA Fisheries Office of

Protected Resources (mammals), which were supplemented with

the literature searches. Mammals were coded at the species level.

Birds and fishes were coded at higher taxonomic levels to overcome

strong geographical biases in data resolution, lack of data accessibil-

ity and extreme intraspecific variation in migratory behaviour [39].

Birds were coded at the family level. Fishes were initially coded at

the order level for those with strong phylogenetic association of

schooling, and groups with mixed schooling behaviour were

more thoroughly examined and coded at the family or genus

level (electronic supplementary material, table S6).

(ii) Data analysis
We used cumulative link models (clms) to test the effect of system

and its interaction with collective movement on IUCN risk category

(extinct (EX), extinct in the wild (EW), critically endangered (CR),

endangered (EN), vulnerable (VU), near threatened (NT), least con-

cern (LC)) for birds, mammals and fishes. Within each taxonomic

class, species were typically found in only a subset of the systems
available. For birds, very low sample sizes in freshwater, fresh-

water/marine and marine systems required that we pool those

groups into terrestrial/freshwater, terrestrial/freshwater/marine

and terrestrial/marine, respectively. For fishes, only the systems

freshwater, freshwater/marine and marine were applicable, and

low sample sizes required we pool the highest threat categories

(CR, EX and EN) into one highest risk category. For mammals,

species that were classified as inhabiting any system that included

freshwater (freshwater, freshwater/marine, freshwater/terrestrial

and freshwater/marine/terrestrial) were grouped as freshwater to

retain an adequate sample size for analyses. When comparing

across taxonomic groups, we did not have the proportional odds

to compare all threat categories, so the categories were grouped

into Lower Risk (LC, NT, VU) and Threatened (EN, CR, EW, EX).

We modelled extinction risk with clms using a flexible

threshold and logit link function [40] using the ordinal package

in R [41]. We then compared all model subsets using AIC to

select the best model of extinction risk. Analysis of deviance

tables (ANODE) were then used to evaluate the importance of

parameters in the best model [41]. Finally, we conducted Tukey-

adjusted pairwise comparisons of the nominal effects of the best

model to identify significantly different groupings using the

lsmeans package [42].

(c) Geographical range shifts
(i) Data collection and coding
To examine changes in the spatial distribution of migratory species,

we conducted a literature search investigating geographical range

shifts of any type for migratory species of birds, mammals, fishes

and insects. Insects were included in these analyses (and not

above) because data were sufficient in the literature to include

them in this compilation. All searches were conducted in Web of

Science using the search terms ‘migra*’ and ‘range’, six terms for

taxonomic groupings (mammal*, marine mammal*, bird*, fish*,

insect*) andfour terms denotinggeographical change (i.e. shift*, con-

tract*, expand*, change*). We also searched within the citations of the

relevant papers for additional papers. This resulted in a total of 5163

papers, of which 66 had quantitatively investigated geographical

range shifts in migratory species and produced results concluding

some change or no change had occurred (not predictive). All species

treated in this literature search were confirmed to match our defi-

nition of migration. For each paper, we recorded the study species,

taxonomic class and the system and realm as defined by IUCN

and matched to the LPD. We then categorized the type of geographi-

cal range change for each species as one of four possible categories:

contraction, shift, no change or expansion. The data were split taxo-

nomically and by type of geographical range change (see electronic

supplementary material, table S7 for coding and literature).
3. Results
(a) Population change over time
(i) Global patterns
When data derived from the LPD from all species, systems

and realms were examined together there was no significant

difference between migratory and non-migratory species

(p ¼ 0.138) (figure 1a).

Effect of migration on likelihood of annual increase differed

by taxonomic group, with migratory birds significantly

more likely to have faced declines than non-migratory birds

(p , 0.001; table 1) and migratory mammals significantly less

likely to experience annual declines than non-migratory mam-

mals (p ¼ 0.032; table 1). From AIC, the best model for

predicting the likelihood of annual increase for birds and mam-

mals was determined to be the simplest model, with Migratory
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as the only explanatory variable (no interaction between

migration and system). However, the best model for fishes

was determined to be Migratory � System, which includes

the interaction between migration status and system (fresh-

water and marine). There was no significant difference found

between migratory and non-migratory fishes in either system

(table 1).
(ii) Regional patterns
Data from the LPD were sufficiently robust in nine cases to

permit further subdivision and analyses of the pattern at

finer regional levels. Of the nine regional trends, six show

migratory populations tending to perform worse than non-

migratory populations (figure 2; electronic supplementary

material, figures S1–S4).

In the Palearctic and Pacific regions, migratory populations

performed worse than non-migratory populations for each

group (figure 2), with the exception of Pacific marine birds,

for which migratory and non-migratory species appear to

have been on similar trajectories (electronic supplementary

material, figure S2). Terrestrial and freshwater Palearctic

migratory birds are both faring worse than non-migrants

(figure 2a,b), which matches the taxonomic level results. The

trend for terrestrial Palearctic mammal change over time is

different from the overall results for mammals; here, Palearctic

terrestrial migrants are doing worse than non-migrants

(figure 2c). Similarly, migratory Pacific marine fishes appear

to be doing worse than non-migrants (figure 2d ), whereas

there was no significance in the taxonomic analysis. For LPIs

used to create the figures, see electronic supplementary

material, table S8.

(b) Species extinction risk
Within all migratory species, analysis of IUCN data indicates

that extinction risk differed significantly among taxonomic

groups. Migratory mammals were more likely to be placed

in a higher extinction risk category than either migratory

fishes or birds (table 2). Analyses within taxonomic groups

yielded additional insights: for birds and fishes, the best

model included model terms System, Collective behaviour

and their interaction. However, no model outperformed the

null for mammals (electronic supplementary material, table

S9). Extinction risk was higher for non-collective migratory

birds in some systems, but not all (table 2). Migratory birds

in terrestrial/marine systems (seabirds) had a higher risk of

extinction than avian migrants in other systems; non-collective

migratory seabirds were at greater risk of extinction than

collective migratory seabirds.

For fishes, the best model was the full model that

included the interaction of system and collective behaviour.

The interaction was significant (p , 0.001; table 2); for collec-

tive migrants, marine fishes were placed in lower risk

categories than their freshwater counterparts. Non-collective

freshwater and anadromous migrants were substantially

more at risk of extinction than any marine migrants (table 2).

(c) Geographical range shift
The literature review of geographical range change of

migratory species produced different patterns of change for

birds (n ¼ 451), mammals (n ¼ 30), fishes (n ¼ 138) and insects

(n ¼ 107) (figure 3). Eighty per cent of the bird records indi-

cated shifts in geographical range, with the remaining

records indicating contractions or expansions. Fish literature

produced the second-largest source of records on geographical

range change of all the taxonomic groups, with the majority

(73%) of these records experiencing range contractions.

Although there were relatively few records of mammal geo-

graphical range change, 47% of mammal records indicated

range contractions. There was extremely low taxonomic diver-

sity in data available on insect geographical range, with all
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Table 1. Model results from Living Planet Database likelihood of annual increase analysis for birds, mammals and fishes. Odds ratio, standard error (s.e.) with
confidence intervals, Z score and p-value are reported for each taxonomic group, with fishes split into freshwater and marine systems.

taxonomic group environmental system odds ratio s.e. Z score p-value

birds all 1.317 0.11 (1.12 – 1.55) 24.10 ,0.001

mammals all 0.668 0.10 (0.496 – 0.901) 2.15 0.032

fishes freshwater 1.173 0.15 (0.91 – 1.51) 21.37 0.171

marine 0.756 0.15 (0.51 – 1.13) 1.256 0.210
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records identified coming from Lepidoptera. Seventy per cent

of these records showed range expansions.

4. Discussion
Our global analysis of population change across all taxa did

not reveal discernible differences between migratory and

non-migratory species; however, analyses of spatially and

taxonomically disaggregated data revealed that migration

vulnerability and extinction risk are highly context-dependent.

(a) Overall taxonomic vulnerability
Across all taxonomic groups, migration did not consistently

predict vulnerability to population decline. This suggests that

characteristics of taxonomic groups, such as evolutionary his-

tory, determine how migration interacts with other variables

(i.e. environmental system and collective navigation).
(b) Birds
In agreement with previous studies that used different data

sources and analytical approaches [17,43], we observed

elevated vulnerability for migratory birds relative to non-

migratory birds (table 1). One possible explanation for the

elevated vulnerability of migratory birds is that they are subject

to ‘multiple jeopardy’ because they require many different sites

throughout their annual cycles: stopover sites, overwintering

habitat and breeding grounds [21]. Recent field studies have

found disproportionate rates of bird mortality during migratory

periods (e.g. raptor mortality was six times higher during

migration than stationary periods; [44]), and habitat loss in breed-

ing or overwintering grounds is a significant threat to migratory

birds [45]. While migratory birds are disproportionately vulner-

able to population decline compared to non-migratory birds,

overall extinction risk for birds in IUCN is lower than mammal

extinction risk (table 2). This indicates that while migratory



Table 2. Analysis of deviance (ANODE) table and Tukey-adjusted pairwise comparisons of model coefficients for all IUCN extinction risk analyses. ANODE results
shown at left correspond to the best model of extinction risk for each analysis. Pairwise comparisons for group differences in each best model are shown on the
right. Species were coded as collective migrants based upon database or literature indicating they travel in social groups. Environmental system (freshwater,
marine, terrestrial or their combination) was coded from IUCN classifications. The mammal model showed no difference from the null and thus comparisons
were not possible. Group levels denote significant differences from pairwise comparisons within each dataset for birds, fishes, mammals and all taxa. Lowercase
lettering (i.e. ‘a’) indicates a lower risk of extinction than higher lettering; ‘b – d’, least-square means and asymptotes of their 95% confidence limits were used
to differentiate groups, but their numeric values are arbitrary; these are listed in electronic supplementary material, table S9.

taxa

ANODE for best model pairwise comparisons of groups

predictor d.f. x2-value p-value collective migrant environmental system group

Birds

no terrestrial a

no terrestrial/freshwater abc

system 3 448.48 ,0.001 yes terrestrial/freshwater ab

collective 1 343.47 ,0.001 yes terrestrial ab

system : collective 3 98.91 ,0.001 yes terrestrial/freshwater/marine b

no terrestrial/freshwater/marine abcd

yes terrestrial/marine c

no terrestrial/marine d

Fishes

no marine a

system 2 79.402 ,0.001 yes marine ab

collective 1 69.103 ,0.001 yes freshwater/marine abc

system : collective 2 10.114 ,0.01 yes freshwater bc

no freshwater c

no freshwater/marine c

Mammals

n.a. all levels equivalent

overall extinction

risk

birds a

class 2 1023.6 ,0.001 fishes a

mammals b

contraction shift no change range expansion
1.0

0.5

0
insects
n = 107

birds
n = 451

mammals
n = 30

fish
n = 138

Figure 3. Proportion of types of migratory range changes reported for migratory insects (i.e. butterflies), birds, mammals and fishes. Range changes can be con-
tractions, shifts (i.e. change in geographic location), expansions or no change. Width of x-axis represents relative sample size of taxonomic groups. The number of
records of change for each taxonomic group is reported. (Online version in colour.)
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bird populations are more likely to decrease than non-migratory

birds, many migratory bird populations are still relatively robust

and there is high potential for conservation.

(c) Mammals
Contrary to the well-documented losses of high profile

mammal migrations [18,46], our population analysis sug-

gests that migratory mammals were more likely to increase

annually than non-migrants. The vagility of migratory

mammals could aid their ability to escape anthropogenic

threats in areas where non-migrants would have more diffi-

culty moving territories. Additionally, migratory mammals

appear to receive disproportionate conservation attention

due to their visibility (e.g. ungulate herds and great whales)

and influence on tourist-based economies (e.g. safaris and

whale-watching), which have helped motivate the direct

investment of conservation funds and attention to such species

(e.g. rinderpest eradication; [47]).

Despite the increases of migratory mammals relative to

non-migrants, IUCN lists migratory mammals in higher

threat categories than birds or fishes (table 2). This discrepancy

likely derives from the different time periods and variables

considered (e.g. IUCN considers variables such as population

size and connectivity that the LPD does not). This is likely

true also for birds and fishes.

It is also important to note that increasing the abundance of

migratory mammals is a necessary but not sufficient condition

for the persistence of the migrations themselves. South African

wildlife, for example, is often managed in carefully controlled

fenced plots. This has facilitated population increases for

a number of species in recent years, but this management

strategy effectively eradicates migration potential [48,49].

(d) Fishes
There was no significant difference in the likelihood of annual

population increase between migratory and non-migratory

fishes. In our environmental system-level analyses of IUCN

data, however, migratory freshwater fishes were at more risk

of extinction than migratory marine fishes (table 2). Marine

fishes face immense threats from overharvest; but, as with

other taxa, the mobility of marine migrants could allow

migrants to more successfully avoid anthropogenic threats,

whereas migratory freshwater fishes are less able to escape

habitat modification, pollution and water extractions [23,50].

(e) Regional vulnerability
Data limitations made regional analyses challenging, but in the

northern temperate Palearctic and Pacific realms, migrants

were more vulnerable to extinction than non-migrants across

all environmental systems (figure 2). Terrestrial and freshwater

migratory birds were again more vulnerable than non-

migrants (figure 2a,b); although, the heightened vulnerability

of terrestrial mammal and marine fish migrants relative to

non-migrants differs from the overall results for mammals

and fishes (figure 2c,d). This suggests that declines in migratory

populations can be obscured in the aggregated data and

emphasizes the need to examine migrants in their local context.

( f ) Collective navigation
As previously discussed, collective navigation could be either

an aid or a liability for migratory species. While the best
model for bird and fish extinction risk included collective navi-

gation, extinction risk did not differ significantly between

collective and non-collective species for most groups. How-

ever, the lower risk of collectively moving migratory seabirds

relative to non-collectively moving migratory seabirds

suggests there might be some benefit to seabirds moving in

flocks, in that they are better able to avoid threats than their

non-flocking counterparts (e.g. [51]). It is interesting to note

that migratory seabirds have the highest risk of extinction as

compared to the migratory birds in other environmental sys-

tems (table 2). The reliance of seabirds on both terrestrial

spaces for breeding and marine spaces for feeding could elev-

ate their extinction risk [52], while collective navigation could

aid their immense movements and unique use of different

resources and habitats. Although collective navigation seems

to aid migratory seabirds, the overall population declines

in migratory birds are concerning, given the observed relation-

ship between collective navigation and population abundance

[15]. With continued decline, collectively moving migrants

could face the threat of population collapse.

We did not find evidence in migratory mammals for an

effect of collective movement. However, the small sample

size of migratory mammals in several environmental systems

may have played a role in our inability to detect differences

between collective and non-collective migrants. It is interesting

to note, however, that the most threatened migratory mammal

(i.e. Critically Endangered and Extinct in the Wild) species

were collective migrants. While largely a benefit, the reliance

of collectively navigating species on inter-individual cues

can also result in cascading consequences when one indivi-

dual makes a mistake (e.g. failed wildebeest river crossings).

Increasing anthropogenic change could result in greater

potential for mistakes and greater cost to collective migrants.

Although fishes similarly showed no significant inter-

actions between extinction risk and collective movement,

non-collectively moving freshwater and diadromous fishes

were more likely to be placed in higher threat categories than

the rest of the migratory fishes, once again at least partially

suggesting some benefit to moving collectively.

Finally, while coding for collective movement we found

that species that tend to move in social groups were typically

phylogenetically related (electronic supplementary material,

table S6). The interrelatedness of collectively moving species

could be a confounding factor in this analysis, potentially

obscuring the importance of collective navigation.
(g) Geographical range
Restricting movement, particularly access to key resources, also

endangers migrations [18]. As with previous results, the litera-

ture review on migratory species’ geographical range suggests

that the type of range change differs between taxonomic

groups. Insects (i.e. butterflies) mostly exhibited expansions

in range (figure 3), which have largely been attributed to

increasing temperatures in temperate areas such as Europe,

where many such studies are concentrated [53]. The majority

of studies on bird ranges only documented overall shifts,

likely because many bird studies were not able to track bird

populations across their entire range, thus limiting their ability

to conclude whether an absence in one area represented a con-

traction or simply a change in geographical location. Shifts in

migratory birds could be due to a variety of factors, including

habitat loss and climate change [54]. The contractions in
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migratory mammals seem to support the notion that while

migratory mammals are faring better than non-migrants with

respect to population change, threats to the functional integrity

of mammal migrants may still exist. Both freshwater and

marine fishes exhibited contractions, with the contractions in

freshwater fishes largely due to damming of rivers [55] and

marine fish contractions likely caused by intense fishing

pressure extirpating even highly mobile species from parts of

their range [56].

It is interesting to note that aerially mobile migratory

groups (i.e. insects and birds) experienced many expansions

and shifts, while the groups restricted to land and water move-

ment (i.e. mammals and fishes) appeared to experience more

contractions in range. The energetic cost of moving on land

and the potential for barriers in aquatic and terrestrial systems

might decrease the ability of mammals and fish to respond to

anthropogenic changes relative to aerially mobile species

[22]. We posit that these patterns support the idea that loco-

motion on land or in water might expose migratory species

to increased threat from anthropogenic habitat fragmentation

(e.g. roads, dams, deforestation), but other correlates need to

be considered to make such links definitive.

(h) Caveats
We draw attention to four key limitations inherent to these ana-

lyses. First, we highlight the recent nature of the abundance

comparisons (population trends were examined relative to a

baseline of 1970), which would not detect population declines

for species that were negatively impacted prior to 1970

(e.g. marine mammals). Second, the LPI relies on aggregated

publicly available data and is therefore prone to biases associ-

ated with over-representation of certain taxa and regions [57],

specifically towards temperate regions (electronic supplemen-

tary material, tables S4 and S5). We analysed the LPD data in

both aggregate and within disaggregated regions, but were

unable to use the diversity-weighted approach normally

employed to account for such biases [57] due to availability

of data and species numbers. While we fully agree that there

are biases and pitfalls to this approach, previous analyses of

these biases indicate that even an unweighted index is likely

indicative of overall patterns [31]. While the LPD does contain

trends on commercially important species, the impact of these

is reduced through the inclusion of harvest or catch data only if

they include a measure of effort. Third, our study purposefully

does not thoroughly examine correlates for extinction risk, as

many studies have already usefully done [20,37]. We focused

on patterns and trends in migratory species, necessitating

further study to conclusively identify mechanisms behind

observed patterns of vulnerability and extinction risk for

migrants. Fourth, GROMS does not comprehensively cover

all migratory species. GROMS includes a total of 4472 records,

of which approximately 3400 migratory species are also

in IUCN.
5. Conclusion
In the instances where migration is indeed under threat, we risk

losing important ecological functions and charismatic biologi-

cal phenomena. From these analyses, it is clear that migration

vulnerability is dependent on complex interactions between

behavioural traits, taxonomy and the environmental system

through which the species navigates. Species with a high poten-

tial for collective navigation might be able to more efficiently

avoid threats in certain environmental systems (i.e. marine

birds, freshwater and diadromous fishes), but collective naviga-

tion could amplify the vulnerability of declining species, such as

migratory terrestrial mammals in the Palearctic. Migratory bird

populations are disproportionately vulnerable compared with

non-migrants, whereas migratory mammals are less vulnerable

than non-migrants. However, the overall pattern of high extinc-

tion risk in mammals, coupled with the high proportion of

range contractions experienced by migratory mammals,

is concerning. Spatial distribution of migratory mammals,

rather than population declines, might be more relevant to pre-

serving their migrations. While there is certainly cause for

concern, some of our results suggest possibilities for recovery,

namely: recent increases in certain migratory mammals, poten-

tial benefits of collective navigation, and remaining high

abundances of birds despite declines.

Of note, if we aim to recover the functional significance of

migration, we cannot simply focus on increasing the popu-

lation sizes of migratory species, but need to ensure that

these important increases are matched with recovered ecologi-

cal potential for these larger groups to meaningfully execute

migration. In our increasingly fragmented world, the latter

goal perhaps is more challenging than the former. The broader

patterns reported here suggest both an opportunity and a

roadmap for mounting strategic interventions to protect this

ecologically, socially and economically important part of the

behavioural portfolio of life.
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