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ABSTRACT
Across ecosystems and biomes, most species in biological communities are rare. Many studies discount rare species when exam-
ining biodiversity patterns, assuming that common species are most influential for ecosystem functioning. There is growing evi-
dence, however, that rare species contribute unique functions in many ecosystems; thus, discounting them produces misleading 
conclusions about how biodiversity is changing in the face of natural and anthropogenic forces. Rare species are more likely to 
be missed by multi- species sampling designs and are thus particularly vulnerable to detection error. Best practice in biodiversity 
assessments should include rare species and account for error in the detection process. We outline a general approach that ac-
counts for detection error in sampling designs using multi- species occupancy and abundance models (MSOM/MSAM). We then 
show how uncertainty in detection can be propagated from MSOM/MSAM results to derive more accurate estimates of alpha and 
beta diversity metrics. Finally, we show how uncertainty in these diversity metrics can be accounted for in follow- up regression 
models to evaluate relationships between biodiversity and global change covariates. Using three case studies across diverse taxa 
(birds, insects, and plants), we demonstrate how accounting for the detection process alters the relationships between biodiver-
sity and global change drivers in ways that are important for understanding and predicting ongoing change in these communi-
ties. Our generalizable analysis approach can aid in accounting for rare species in studies of global biodiversity.

1   |   Introduction

Most species in natural ecosystems are rare (Rabinowitz  1981; 
Figure 1). Historically, rare species have often been excluded from 
analyses of biodiversity under the assumption that more abundant 
or common species contribute most to ecosystem functioning 
(Poos and Jackson 2012; Sasaki and Lauenroth 2011). But, there is 

growing evidence that rare species are important for understand-
ing relationships between biodiversity and ecosystem functioning 
and services (Dee et al. 2019; Mouillot et al. 2013). For example, 
rare species disproportionately influence functional diversity (Jain 
et al. 2014; Leitão et al. 2016; Roth et al. 2018) since these species 
often have unique trait combinations (e.g., large- bodied long- 
distance seed dispersing birds in Australia; Leitão et  al.  2016). 
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Thus, including rare species in biodiversity assessments may 
fundamentally change our understanding of how ongoing global 
change will shape ecosystems (Jaureguiberry et al. 2022).

Incorporating rare species into biodiversity metrics may alter 
predictions about many facets of biodiversity since rare species 
may have unique responses to environmental perturbations 
(Säterberg et  al.  2019). However, many multi- species observa-
tional datasets, even those with long temporal or broad spatial 
coverage, do not incorporate survey designs to capture rare or 
patchy species distributions (Devarajan et  al.  2020; Jeliazkov 
et al. 2022; Sanderlin et al. 2014; Zipkin et al. 2010). As a result, 
many multi- species sampling methods are likely to systemati-
cally miss rare species. A challenge to incorporating rare spe-
cies is the possibility of “false negatives”: species or individuals 
are present but considered absent because they are not detected 
during a survey (Zipkin et al. 2010). Thus, when we examine bio-
diversity patterns to identify environmental factors influencing 
biodiversity, our analyses may be biased by weaknesses of the 
sampling design, making it challenging to discover real biologi-
cal patterns. Not considering rare species in biodiversity- global 
change assessments may alter our predictions of the direction, 
magnitude, and timescales of influence of global change drivers.

Biodiversity assessments could benefit from accounting for im-
perfect detection of species, especially those that are rare. We 
outline a general approach that leverages established modeling 
methods that account for imperfect detection (Bayesian multi- 
species occupancy and abundance models; Dorazio et  al.  2006; 
Iknayan et al. 2014) to generate unmeasured (“latent” or “true”) 
abundance and occupancy estimates from observed data with de-
tection error. We then show how these “true” estimates can subse-
quently be used to generate biodiversity metrics (both alpha and 

beta diversity), thus propagating uncertainties associated with the 
detection error process to accurately describe diversity patterns. 
Diversity estimates (mean and variance) can be subsequently an-
alyzed via regression models that explicitly incorporate variance 
as a measure of uncertainty to evaluate how potentially important 
covariates impact community diversity. Regression modeling can 
also incorporate the lagged effects of environmental drivers using 
a stochastic antecedent modeling framework (Ogle et  al.  2015; 
Figure  2). Using this multi- step process, we demonstrate how 
accounting for imperfect detection of all species (especially rare 
species) alters estimates of global change driver effects—direction, 
magnitude, and timescales of influence—using three examples 
of long- term community datasets representing a variety of taxa 
(plants, invertebrates, and vertebrates).

2   |   Materials & Methods

2.1   |   Overview of Modeling Process

Our modeling framework examines relationships between 
environmental covariates and biodiversity following a two- 
part process (Figure  2). First, we modeled latent (“true”) 
abundance or occupancy for all species in a community using 
either a multi- species abundance (“MSAM”) or occupancy 
(“MSOM”) model (Dorazio et  al.  2006; Iknayan et  al.  2014). 
We extended the MSAM and MSOM approach by simulta-
neously computing derived values for indices of biodiversity 
(including alpha and beta diversity aspects of both taxonomic 
and functional diversity). Then, we used the posterior mean 
and standard deviation estimates of the biodiversity indices 
in a subsequent beta- regression model (da Silva et al. 2018) to 
examine the concurrent and lagged effects of environmental 

FIGURE 1    |    Two dimensions of rarity that highlight that rarity is the norm in ecosystems across the globe. Here, we show that most species are (a) 
rare in abundance across sampling surveys and (b) detected in relatively few sampling sessions. We demonstrate this general pattern for a diversity 
of taxa across systems, including terrestrial and marine animals and plants. (Data from: Bateman and Childers 2024; Boyle 2023; Gibb et al. 2017; 
Lightfoot 2021; Morgan Ernest et al. 2022; Reed and Miller 2022; Swan and Ploughe 2023).
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variables on biodiversity (Ogle et al. 2015). Below, we provide 
more details on each modeling step and the datasets we used 
to illustrate its utility. Further details can be found in the 
Supporting Information and in our online tutorial (https:// an-  
bui. github. io/ commu nity_ detec tion_ tutor ial/ ).

2.2   |   Accounting for Detection Error

Accounting for detection error in observational datasets of spe-
cies occurrence or abundance is not a new concept (e.g., Dorazio 
et  al.  2006; Kéry and Schmidt  2008; MacKenzie et  al.  2002; 
Royle et al. 2005). Across fields, researchers have acknowledged 
that it can be difficult to detect all components (e.g., species) in 
ecosystems and have proposed a suite of approaches for dealing 
with this problem. For multi- species datasets, it is common to 
use multi- species occupancy and abundance models (MSOM/
MSAM) that “correct” observed data to estimate latent (i.e., vari-
ables that are either not observed or partially observed) “true” 
values of occurrence (occupancy) or abundance. These models 
typically include two parts: (1) an observational process model 
that accounts for uncertainty in the observed data using covari-
ates that could alter detection probabilities, and (2) a biological 
process model that is informed by the detection error process in 
(1), producing latent (unmeasured) “true” occupancy or abun-
dance estimates that can, in turn, be modeled as a function of en-
vironmental and biological covariates (Figure 2). These models 
allow rarer species in a community to “borrow strength” from 
more common species by allowing species- level parameters to 
be modeled hierarchically around community-  or group- level 

parameters (Iknayan et al. 2014; Ogle et al. 2013). These models 
account for “false negatives” and generally shift latent species 
abundance and frequency distributions to higher values rela-
tive to observed values (Figure 3). Further, while we focus on 
rare species in this study, these methods also better quantify 
occupancy and abundance of species that may not be rare but 
are hard to detect due to cryptic behavior or markings (Garrard 
et al. 2013). The MSOM/MSAM approach has been applied often 
in studies of vertebrate communities (Kellner and Swihart 2014) 
but is not common practice in community ecology, especially for 
invertebrates and plants; but see (Chen et al. 2013; Lamouille- 
Hébert et al. 2025). Moreover, there is an opportunity to use the 
species- level latent abundance or occupancy estimates to pro-
duce realistic estimates of biodiversity that account for detection 
errors at the species level, but aside from a few studies focusing 
on species richness (Dorazio et al. 2006; Tingley et al. 2020), this 
approach has generally not been applied to other diversity met-
rics; but see (Broms et al. 2015; Cannon et al. 2019; Si et al. 2018 
e.g., for both taxonomic and functional alpha diversity met-
rics other than species richness). The structure of these mod-
els is explained thoroughly in original literature (e.g., Dorazio 
et al. 2006; MacKenzie et al. 2002; Royle et al. 2005) and our ap-
plication of them can be found in the (Supporting Information).

2.3   |   Generating Values of Alpha and Beta 
Diversity

Once detection errors have been accounted for via a MSOM 
or MSAM, the latent (“true”) occupancy and abundance of 

FIGURE 2    |    A simplified graphical model illustrating data, latent processes, and parameters associated with the (A) multi- species abundance (or 
occupancy) model (MSAM or MSOM) that accounts for imperfect detection associated with the observed data (e.g., observed abundance, species 
counts, or presence/absence), which produces posterior estimates of community change and associated estimates of uncertainty, which are in turn 
treated as data in the (B) beta- regression model that evaluates the effects of environmental drivers and their timescales of influence on biodiversity. 
Models in (A) and (B) account for hierarchical or nested sampling schemes by incorporating random effects for time (e.g., year effects) and location 
(e.g., transect, plot, and/or site effects). Covariates used in (A) include variables that potentially affect the probability of detection (e.g., environmen-
tal conditions or species- traits affecting detection ability), and covariates used in (B) represent time- varying biotic or abiotic drivers that likely affect 
diversity, and for which antecedent terms are computed as weighted averages of concurrent and past observed covariate data. A more detailed version 
of this figure can be found in Figure S5.
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each species in a community can be used to generate a va-
riety of biodiversity metrics common in community ecology, 
including measures of alpha and beta diversity based both 
on occurrence and abundance values (e.g., taxonomic and 
functional diversity metrics such as Bray–Curtis and Jaccard 
dissimilarity and Rao's quadratic entropy; (Baselga  2013; 
Botta- Dukát  2005; Cannon et  al.  2019; Hallett et  al.  2016; 
Morris et  al.  2014; Oksanen et  al.  2020); Figure  3). Further, 
occupancy probabilities can also be used as a proxy for rela-
tive abundances (e.g., Broms et  al.  2015). The Bayesian sta-
tistical framework in which these models are commonly 
implemented draws from the posterior to generate a set of 
independent samples for all stochastic quantities of inter-
est, including the latent abundance or occupancy values (or 
probabilities). Via analysis of the posterior distributions, re-
sulting biodiversity metrics can be described in terms of both 
their central tendency (mean or median) and their variance 
or uncertainty (e.g., standard deviation, Bayesian credible in-
tervals; Ellison  2004). Greater detail on biodiversity metrics 
can be found in the original literature describing them (e.g., 
Baselga 2013; Botta- Dukát 2005; Cannon et al. 2019; Hallett 
et al. 2016; Morris et al. 2014; Oksanen et al. 2020) and can be 
found in the (Supporting Information).

2.4   |   Evaluating Drivers of Biodiversity Patterns

Many diversity indices (including alpha and beta diversity) are 
defined on the [0,1] interval (Oksanen et al. 2020). Thus, we de-
scribe a general Bayesian model framework that uses a beta dis-
tribution to model the stochastic diversity indices (Ferrari and 
Cribari- Neto 2004; Irvine et al. 2016). Importantly, the uncer-
tainty in estimates of biodiversity generated from multi- species 
models is propagated to these downstream analyses. Further, 
because biodiversity responses to environmental drivers stem 
from complex population and community processes related 
to resource availability, competition, species- specific life his-
tory, and food web dynamics, among others, it is likely that 
biodiversity could have a lagged response to potential drivers 
(Essl et al. 2015a, 2015b; Figueiredo et al. 2019; Thompson and 
Ollason 2001). We can explicitly test for these lagged responses 
by combining the beta data model with a stochastic anteced-
ent model (SAM) that provides estimates of covariate effects, 
where the covariates are, in turn, modeled as a weighted av-
erage of concurrent and past values. Each lag period gets an 
estimated importance weight describing its relative influence 
on the biodiversity response (Ogle et al. 2015). These lagged re-
sponses can be set at a variety of timescales (e.g., days, weeks, 

FIGURE 3    |    Distributions of abundances and occurrence when ignoring (blue) or accounting for (yellow) detection error for three example data-
sets: (a) birds at the Konza Prairie Long- term Ecological Research Site, Kansas, USA (Boyle 2023), (b) plants at Petrified Forest National Park, Arizona, 
USA (Swan and Ploughe 2023), and (c) grasshoppers at the Sevilleta Long- term Ecological Research Site, New Mexico, USA (Lightfoot 2021). Results 
show how accounting for imperfect detection alters estimates of a variety of biodiversity metrics based on abundance for (d) birds (Rao's quadratic 
entropy), occurrence for (e) plants (species turnover) and abundance for (f) grasshoppers (Bray–Curtis dissimilarity). In all three, accounting for 
imperfect detection shifts species abundance and occurrence distributions to the right (a–c) compared to the observed data that ignores detection 
errors. Accounting for rare species leads to (d) increases in bird functional diversity, (e) increases in the number of plant species lost over time, and 
(f) decreases abundance- based dissimilarity for grasshoppers.
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seasons, years) depending on the biology of the organisms in a 
community.

In the beta- regression model, we treated the posterior mean biodi-
versity metric for a site and year as the response variable and ac-
counted for uncertainty in these values via the posterior standard 
deviation by partitioning variance in the model into “known” vari-
ance (the posterior standard deviation) and additional unknown 
variance that describes additional variability in the biodiversity 
indices that is not explained by the environmental covariates. We 
modeled the mean or expected diversity index using the beta re-
gression with an intercept and coefficients for the effects of each 
antecedent covariate in the SAM model. Each time- varying an-
tecedent covariate represents a weighted average of the current 
value (at the time concurrent with y) and past values preceding 
time y. The importance of each time lag to the overall covariate 
effect is defined by an importance weight. We assigned the vec-
tor of importance weights for a given covariate a relatively non- 
informative Dirichlet prior so that these weights sum to 1 across 
all lags. Thus, when a covariate effect is significant, the weights for 
each time lag for that covariate lend insight into the timescale(s) 
over which that covariate influences biodiversity. This approach 
builds on existing approaches (Ferrari and Cribari- Neto  2004; 
Irvine et al. 2016; Ogle et al. 2015) but is novel in incorporating the 
additional “known” uncertainty from the MSOM/MSAM models 
and can be found in the (Supporting Information).

2.5   |   Applying the Combined Modeling 
Framework

To evaluate the importance of detection error, we derived values 
of biodiversity for three examples in two ways: (1) using obser-
vational data ignoring detection error and (2) using the above 
modeling framework. These examples examined how account-
ing for imperfect detection alters predictions of the direction, 
magnitude, and temporal scale of effects of environmental co-
variates on multiple biodiversity metrics across a diverse range 
of environments and biological communities. Any differences 
stemmed largely from the inclusion of rare species. Our aim 
was not to provide comprehensive ecological analyses of these 
communities, but rather, to illustrate the utility of the combined 
modeling approach.

We chose gold- standard, long- term ecological survey and mon-
itoring data that met the assumptions for multi- species models 
(e.g., multiple surveys within “closed” timeframes) and that 
had sufficient temporal coverage (15–20+ years) to examine 
the influence of long- term variability in climate drivers. For 
all three examples, we chose alpha and beta diversity metrics 
that are common in the field (e.g., used widely in the R package 
vegan; Oksanen et al.  2020), and/or that highlight the general 
utility across dataset types (presence vs. abundance) and taxo-
nomic and functional facets of biodiversity. These represent a 
subset of the full potential of biodiversity metrics and are meant 
to highlight the consistent importance of imperfect detection 
across systems and metrics. Choice of metrics will depend on 
the goals of specific studies and often a combination of metrics 
will paint a more complete picture of biodiversity and change 
(Carroll et al. 2025; Morris et al. 2014). Further, all datasets rep-
resented surveys that captured > 95% of the total species pool 

likely present in each meta- community, based on rarefaction 
(Figure S1), thus allowing us to calculate diversity metrics based 
on a known species pool (Tingley et al. 2020). The Supporting 
Information provides details on the data processing for all three 
examples and results for several additional diversity metrics 
(Figures S2–S4). Code and data can be found online (Miller- ter 
Kuile et al. 2025).

2.6   |   Case Studies

2.6.1   |   Functional Richness of Bird Communities 
at the Konza Prairie Long- Term Ecological Research 
(LTER) Site, Kansas, USA

Functional diversity metrics describe communities in terms of 
how the organisms in that community contribute to ecosys-
tem functions such as nutrient cycling and storage (Mammola 
et  al.  2021). Studies have shown that rare species are import-
ant for these metrics (Leitão et  al.  2016; Mouillot et  al.  2013), 
since rare species can often represent unique trait combinations 
(i.e., larger animals are rarer and disperse larger seeds; Donoso 
et al. 2020).

In this example, we examined Rao's quadratic entropy, an 
abundance- based metric of functional richness of grassland 
passerine bird communities at Konza Prairie LTER, Kansas, 
USA (Boyle 2023; Bruckerhoff et al. 2020; Nippert 2023; Tobias 
et al. 2022). This community comprised 78 distinct species and 
we compiled traits using a set of traits from the AVONET trait 
database (Cannon et al.  2019; Tobias et al.  2022). In the beta- 
regression, we considered the covariates of temperature and 
cumulative precipitation, using daily weather station data col-
lected at the KNZ LTER headquarters (Bruckerhoff et al. 2020; 
Nippert 2023). We compiled these data at a seasonal scale (“cold, 
dry”: October–March and “warm, wet”: April–September). We 
considered the effect of the concurrent season (always the “cold, 
dry”) and the preceding five seasons.

2.6.2   |   Occurrence- Based Dynamics of Plant 
Communities in Petrified Forest National Park, 
Arizona, USA

Community dynamics can alter ecological stability (e.g., how 
ecosystems support ecosystem functions) through time (Loreau 
and de Mazancourt 2013). One way of quantifying community 
dynamics is through changes in species occurrence over time 
(“turnover” or “nestedness”; Baselga 2013), which can be parti-
tioned into local extinction and colonization (Hallett et al. 2016). 
Rare species are more likely to go locally extinct due to small 
population sizes and relative isolation from other conspecific 
patches (e.g., Matthies et al. 2004); therefore, improved estima-
tion of their presence helps to better represent local extinction 
events.

In this example, we examined temporal patterns of species losses 
based on occurrence data for understory plants in Petrified Forest 
National Park, Arizona, USA. These data come from the National 
Park Service's Inventory and Monitoring program (Swan and 
Ploughe 2023). This community consists of 84 species of grasses, 
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forbs, shrubs, and cacti. We focused on evaluating changes in 
community composition through time from 1 year to the next 
sampling year. Data were not collected on an annual basis, so 
we considered the change over the reported sampling period, 
from y to y + Δy, where Δy was > 1 year. In the beta- regression, we 
considered the effects of precipitation and vapor pressure deficit 
(VPD), both of which are expected to be important in this semi- 
arid system (Cowles et al. 2016). We compiled monthly climate 
data from PRISM (PRISM Climate Group 2014) for each survey 
plot and divided these data seasonally per year, with a focus on 
winter (November–February), spring (March–April), early sum-
mer (May–June), and monsoon (July–September). We consid-
ered the concurrent season as well as the previous seven seasons 
(2 years).

2.6.3   |   Abundance- Based Dynamics of Grasshopper 
Communities at the Sevilleta LTER, New Mexico, USA

Another way temporal community dynamics are examined is 
through abundance- based beta diversity metrics (e.g., Bray–
Curtis dissimilarity between time points at a site, Oksanen 
et al. 2020). While many abundance- based metrics are shaped 
mostly by common species (Brasil et al. 2020), better accounting 
for all species is likely to alter these estimates. There are many 
abundance- based metrics of beta diversity, and some even better 
weight rare species (e.g., Chao et  al.  2005); however, we have 
chosen to use Bray–Curtis because it is a familiar and widely 
used metric often assumed to be insensitive to the inclusion of 
rare species (Anderson et al. 2011).

In this example, we examined temporal variability in beta di-
versity of grasshopper communities at Sevilleta LTER from 1992 
to 2019 (Baur et al. 2022; Lightfoot 2021; Moore and Hall 2023). 
This community is composed of 46 species of grasshoppers. 
We focused on evaluating changes in community composition 
through time from 1 year to the next (i.e., from year y to y + 1). 
In the beta- regression, we considered the variables of mean 
monthly temperature, total monthly precipitation, and mean 
live plant biomass (Jonas et  al.  2015). Climate data were col-
lected at a weather station near both sites at an hourly times-
cale (Moore and Hall 2023). We summarized climate data at a 
seasonal timescale (temperature: “warm” [April–October] and 
“cool” [November–January]; precipitation: “wet” [July–October] 
and “dry” [November–June]). We considered the effect of the 
concurrent season temperature and precipitation as well as the 
previous five seasons. We averaged seasonal (spring and fall) 
plant biomass data for each year for the understory plants col-
lected at each site (Baur et al. 2022). We considered the biomass 
effects of the concurrent season as well as the previous 10 sea-
sons (five and a half years).

3   |   Results & Discussion

3.1   |   Functional Richness of Bird Communities at 
the Konza Prairie Long- Term Ecological Research 
Site, Kansas, USA

For bird communities in Konza Prairie LTER, Kansas, USA, 
functional alpha diversity measured via Rao's quadratic 

FIGURE 4    |    Illustration of how accounting for imperfect detection alters estimates of covariate effects and their timescales of influence on bird 
functional diversity measured as Rao's quadratic entropy. Data are from species abundance surveys of passerine bird species from the Konza Prairie 
Long- term Ecological Research (LTER) site in Kansas, USA (Boyle 2023; Nippert 2023).
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entropy increased slightly when accounting for detection error 
(Figure 3). Rather than there being a delayed positive effect of 
precipitation on Rao's quadratic entropy, accounting for imper-
fect detection of species demonstrates that, in fact, the precipita-
tion effect acted more quickly (Figure 4B). Further, temperature 
had a much stronger effect on functional diversity of grassland 
birds (Figure 4A) and was most important in the shoulder sea-
sons (spring and fall; Figure 4B). Accounting for detection error 
shifted the ecological interpretation of patterns in this system 
from being a smaller set of simpler potential mechanisms, such 
as precipitation leading to increases in abundance or diversity 
of spring resources that trigger increased nest success or earlier 
migration (Marra et al. 2005; McKinnon et al. 2012) to a com-
plex potential suite of mechanisms. These mechanisms could 
include early emergence of diverse or abundant food resources 
triggered by precipitation prior to the nesting season, changes 
or mismatches in the phenology of birds and resources (e.g., mi-
gration and emergence/germination) in warmer springs or falls, 
or increased competition among birds when warm spring or fall 
conditions lead to more limited food options (Illán et al. 2014; 
Kokko 1999; Studds and Marra 2011).

3.2   |   Occurrence- Based Dynamics of Plant 
Communities in Petrified Forest National Park, 
Arizona, USA

For plant communities in Petrified Forest National Park, Arizona, 
USA, accounting for imperfect detection increased estimates of 

species losses (Figure 3), likely because rare species were better 
accounted for in the community. When we do not account for 
imperfect detection, indices of moisture status—precipitation 
and vapor pressure deficit (VPD)—did not impact species losses 
in this water- limited ecosystem (Figure 5A). Conversely, when 
accounting for imperfect detection, both VPD and precipitation 
had positive effects on species loss. Both drivers had seasonal sig-
nals on species loss, with summer VPD, summer precipitation, 
and winter precipitation having the greatest effects (Figure 5B). 
High precipitation in the summer and winter can shape compet-
itive dynamics; highly abundant annual plants may take advan-
tage of improved access to moisture, potentially outcompeting 
rarer species (Kadmon 1995). The temporal signals for both VPD 
and precipitation extended through two summers, suggesting 
that dynamics of reproduction, growth, competition, and ther-
mal or drought stress can have relatively long “memories”, even 
in communities with shorter- lived plants (Fernández- Pascual 
et al. 2019; Walter et al. 2011).

3.3   |   Abundance- Based Dynamics of Grasshopper 
Communities at the Sevilleta LTER, New 
Mexico, USA

For grasshopper communities in Sevilleta LTER, New Mexico, 
USA, we estimated lower abundance- based community change 
(smaller values of Bray–Curtis dissimilarity) when accounting 
for detection error (Figure  3). Potentially because of this reduc-
tion in Bray–Curtis dissimilarity, we estimated a weaker effect 

FIGURE 5    |    Illustration of how accounting for imperfect detection alters estimates of covariate effects and timescales of influence on plant species 
loss for the Petrified Forest National Park, Arizona, USA understory plant community (Swan and Ploughe 2023).
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of all three covariates (precipitation, temperature, and plant bio-
mass) on community change (Figure 6A). Further, we discovered 
shifts in the temporal signals of all covariates, including a shift to 
a more delayed effect of plant biomass, a change to a dry season 
precipitation signal (versus wet season), and a faster temperature 
signal (Figure 6B). Grasshopper community dynamics are driven 
by complex interactions among environmental drivers that vary 
across species with different food preferences and life histories 
(Branson 2008; Guo et al. 2009; Jonas et al. 2015). For example, a 
shift from wet to dry- season precipitation effects alters our inter-
pretation of the ecological drivers in this system from responses 
to greater plant biomass due to high wet- season precipitation to a 
story of the importance of dry season precipitation on grasshop-
per abundance through alterations in plant nutritional quality 
(Branson 2017). That community change decreased when account-
ing for missed species and individuals suggests that rare species 

may have important stabilizing effects in grasshopper communi-
ties. Further exploration of how temporal dynamics (Bray–Curtis 
dissimilarity) are shaped by the effects of abundance compensa-
tion across species and abundance gradients (e.g., Baselga 2013) 
may reveal the additional importance of rare species for patterns 
of community dynamics in these grasshopper communities.

3.4   |   Conclusion: The Future of Tracking 
Biodiversity Change

The preceding examples showed that accounting for both the 
presence and abundance of rare species across communities 
and environments changed the direction, magnitude, and/or 
timescales of influence of global change drivers on biodiversity. 
These results alter our interpretation of potential mechanisms 

FIGURE 6    |    Illustration of how accounting for imperfect detection alters estimates of covariate effects andtime scaless of influence on tempo-
ral dynamics of grasshopper communities based on Bray–Curtis dissimilarity. Data are from surveys of grasshopper species abundance from the 
Sevilleta Long- term Ecological Research (LTER) site, New Mexico, USA (Baur et al. 2022; Lightfoot 2021; Moore and Hall 2023). Accounting for 
imperfect detection alters estimates of covariate effects and time scales on temporal dynamics of grasshopper communities based on Bray–Curtis 
dissimilarity.
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that shape biodiversity change, which could lead to more fo-
cused experiments on the impacts of climate change on biodi-
versity across ecosystem types (Urban et al. 2016). Importantly, 
diversity responses were nuanced, highlighting the importance 
of community composition and the complex ecological interac-
tions unique to every community. While we examined common 
global change drivers as mechanisms of change, this modeling 
approach could incorporate other biotic drivers (e.g., predation 
and competition) as potential drivers or mediators of biodiver-
sity patterns (Hagen et al. 2012). Further, while we highlight a 
general beta regression method, any distribution appropriate for 
other stochastic “diversity index” types (e.g., Poisson for species 
richness, gaussian for Shannon diversity) can be incorporated 
into this modeling framework that propagates uncertainty. 
Variable effects of species detection on biodiversity metrics high-
light that these metrics describe interrelated but distinct aspects 
of biological communities (Carroll et al. 2025). Further study of 
the unique responses of rare species to environmental change 
(e.g., Säterberg et al. 2019) is an important next step in this field.

We are likely in the Earth's sixth mass extinction (Cowie 
et al. 2022), which is characterized by an increased spatial scale 
and pace of biodiversity loss and change. It is imperative to un-
derstand how the reconfiguration of biological communities is 
shaping ecosystems across the globe. Not only are rare species 
more likely to go extinct (Harnik et  al.  2012), but growing evi-
dence, highlighted here and through our worked examples, illus-
trates how rare species can shape multiple facets of biodiversity 
(Mouillot et  al.  2013; White et  al.  2023), including those that 
impact ecosystem functioning. To best understand and predict 
how ongoing global change will continue to shape biodiversity, 
we suggest the need to examine multiple facets of biodiversity 
and not exclude subsets of communities from analyses based on 
faulty assumptions about their roles (or lack thereof) in shaping 
ecosystems. Building on growing literature on the importance of 
rare species to biodiversity and uniting modeling approaches al-
ready employed across disparate fields of ecology, we can better 
understand the relationships between biodiversity and our ever- 
changing planet.
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